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ABSTRACT. The vertex version of detour index was defined during the
works on connected graph in chemistry. The edge versions of detour
index have been introduced recently. In this paper, the explicit relations
among edge versions of detour index have been declared and due to these

relations, we compute the edge detour indices for some well-known graphs.
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1. INTRODUCTION

The detour matrix is one of the particularly important distance matrices which
are based on the topological distance for vertices in a graph. It was introduced
in 1969 by Frank Harary [5] and it was discussed in 1990 by Buckley and Harary
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[2]. The detour matrix was introduced in 1994 under the name “the maximum
path matriz of a molecular graph” [1,7,8,11 and 14] and theoretical graph theory
contribution to finding the some interest in chemistry [9,10,15,16,17,18,19 and
21]. During these works, the ordinary (vertex) version of detour index has been
defined for a connected graph G as follows:

(1) D@ = Y  diuv|G)

{u,v}CV(G)
where d;(u,v|G) denotes the distance between the vertices u and v on the
longest path, and where the other details are explained below.
In [3,4,6,13 and 20], some work has been done on detour index.
The edge versions of detour index which were based on distance between edges
introduced by Iranmanesh et al. in 2008 [12]. These versions have been intro-

duced for a connected grath as follow:
The first edge-detour index is:

2) Des(G)= > dis(e, f|G)

{e,f}CE(G)
where (e 16) = { AT 7L ang

dii(e, f1G) = min {d;(z,u),di(x,v),d;(y,u),d;(y,v)} such that e = zy and
f=uv.
The second edge-detour index is:

(3) Da(G)= > dule f|G)

{e,f}CE(G)
where dun(e. £|G) = { dlz(e,of|G) 675; and
e =

dia(e, f|G) = max{d;(z,u),di(z,v),d;(y,u),di(y,v)} such that e = zy and
f=uv.
The third edge detour index is:

(4) Deo(G)= Y dile, fIL(G))

{e,f}SV(L(G®))
where djg(e, f |L(G)) denotes the distance between the vertices e and f on the
longest path in line graph L(G).
In this paper, the explicit relations between edge versions and vertex version
of detour index have been declared and due to these relations, the edge-detour
indices of some well-known graphs have been computed.
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2. EXPLICIT RELATION AMONG THE EDGE-DETOUR INDICES

We recall the conditions of distances. d is the distance on set X, if it satisfy in
following conditions:

a- Yu,v € X;d(u,v) >0

b- Vu,v € X;u=v < d(u,v) =0

¢ Yu,v € X;d(u,v) = d(v,u)

d- Yu,v,w € X;d(u,v) + d(v,w) > d(u, w)

At first, we restate the first edge-detour index according to distances between
vertices.

Definition 2-1. Let e = uv, f = xy be the edges of connected graphG. Then,
we define:

di(e, f) = dy(u, ) + dy(u,y) 1— di(v,x) + dl(v,y)'
This quantity is not distance since it is not satisfy in distance conditions.

We define several classes of graphs which are mentioned following due to the
like-distance d;.

Definition 2-2. According d;(z,u), d;(z,v), d;(y,w)andd;(y,v) where e=uv
and f=xy, we define:

A= e 1) € B(@)| [di(e, )] = die. )}
U U 2
1= { ey < 5G| aite. 1 = atte. )+ 3}

As

{te.ny 8@ |1de.n = dite.n)+ 2},

44 ﬁaﬁgE@ﬂmeﬂ=¢@ﬁ+

as = { ey < 516 | Faite. 1 = dite. )+

C= {{evf} - E(G)l I_dZ(evfﬂ = d;(evf)}

Then, we have:

E(G
|A1| 4 |As| + |As| + |A4] + |4s| + |C| = ( | (2)| )
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Figure 1. Some examples for sets which mention above and r edges are the

longest path between u and z in (a).

Now, we find the relation between the like-distance dj and distances d;3, dis

and le-

Definition 2-3. The relation between d; and djg is

Aldy(e, /)] =7
[di(e, )]
[di(e, f)1 =1
[di(e, f)]
[di(e, /)] +1
[di(e, /)] =1

dgl(ev f) =

e, freC
,{e,f}EAl
,{e,f}EAQ
7{67f}€A3
,{6,f}€A4
,{6,f}€A5
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where dj5(e, f) = { d;’((c;, f) Zi; .

Also, dj’ do not satisfy the condition (b), and hence they are not a distance
and are like-distance.
Claim. le = dl5.

Proof. We have to show for anye, f € E(G), dio(e, f) = dis(e, f).

i- If e= f € E(G), then djo(e, f) = dis(e, f) = 0.

ii- If e, f € E(G) are adjacent edges, then,

dio(e, f) = 1 and dis(e, f) = df (e, f) = [H2E2] = 1. Therefore, dig(e, f) =
dis (e, f).

iii- If e, f € F(G)are not adjacent such as Figure 1, then:

1) If {e, f} € Ay, then dig(e, f) =7+ 1 and

dis(e, f) = d/(e, f) = "dz(u,z)erz(u,y);rdz(v,:c)erz(v,y)—‘ = 7 + 1. Therefore,
dio(e, f) = dis(e, f). For example, see the Figure 1 (a).

2) If {e, f} € Aqg, then dig(e, f) =7+ 1 and

dise, f) = dl/(e, f) = "dz(u,m)-l—dz(u,y)Idz(v,m)-‘rdL(v,y)—‘ —1 = r + 1. Therefore,
dio(e, f) = dis(e, f). For example, see the Figure 1 (b).

3) If {e, f} € As, then dig(e, f) =7+ 2 and

dis(e, f) = d;l(e,f) _ "dz(u,m)-i-dz(u,y)IdL(v,m)-‘rdL(v,y)—‘ = r 4+ 2. Therefore,
dio(e, f) = dis(e, f). For example, see the Figure 1 (c).

4) If {e, f} € Ay, then dig(e, f) = r+ 3 and

dis(e, f) = dj/ (e, f) = [dl(U’I)erl(u’y)jdl(v’z)”l(v’y)] + 1 = r + 3. Therefore,
dio(e, f) = dis(e, f). For example, see the Figure 1 (d).

5) If {e, f} € As, then djg(e, f) =7+ 2 and

dise, f) = dJ/(e, f) = "dz(u,m)-l—dz(u,y)Idz(v,m)-‘rdL(v,y)—‘ —1 = r + 2. Therefore,
dio(e, f) = dis(e, f). For example, see the Figure 1 (f).

6) If {e, f} € C, then djp(e, f) = 4r + 1 and
dis(e, f) = dj(e, f) = 4 x (T+2)+(T+2)I(T+2)+(T+2) — 7 = 4r + 1. Therefore,
le(euf):dlS(eaf)' 0

Definition 2-4. The relation between d; and djsis:

v de ] e flEC
@ (e’”‘{ e, +1 e fleC

where dig(e, f) = { d;”(g,f) iié

(b), and hence they are not a distance and are like-distance.
Claim. dlg = dlﬁ.

. Also, d} do not satisfy the condition
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Proof. We have to show for anye, f € E(G), dis(e, f) = dis(e, f).
i-If e= f € E(G), then di3(e, f) = dis(e, f) =0
ii- If e, f € E(G) are adjacent edges, then,
dis(e. f) = di(e, f) +1=0+1=1and dg(e, f) = d}"(e, f) = [H52] = 1.
Therefore, djs(e, f) = dig(e, f).
iii- If e, f € E(G)are not adjacent such as Figure 1, then:
1) If {e, f} ¢ C, then
(1) If {e, f} € Ay, then diz(e, f) = du(e, f) +1 =r+1 and dig(e, f) =
&' (e, f) = | Glen)tdiChp)tdiloo)tdi®y) | — 41, Therefore, dis(e, f) =
dis (e, f).
(2) If {e, f} € Ag, then diz(e, f) = diu(e, f) +1 =r +2 and dig(e, f) =
d"(e, f) = dl(“’z)+dl(“’y)Idl(v’IHdl(v’y) = r+2. Therefore, dj3(e, f) =
dlﬁ(e, f)
(3) If {e, f} € As, then diz(e, f) = dn(e, f) +1 =r+2 and dig(e, f) =
4" (e, f) = dl(u’m)+dl(u’y)Idl(v’w)+dl(v’y) = r+2. Therefore, di3(e, f) =
dis (e, f).
(4) If {e, f} € Aq, then diz(e, f) = du(e, f) +1 = r+2 and dig(e, f) =
&' (e, f) = | Glen)tdiChp)tdilon)tdi®y) | — ;49 Therefore, dis(e, f) =
dis (e, f).
(5) If {e, f} € As, then diz(e, f) = diu(e, f) + 1 = r + 3 and dig(e, f) =
d"(e, f) = dl(“’z)+dl(“’y)Idl(v’IHdl(v’y) = r+3. Therefore, dj3(e, f) =

dl6(67 f)
2) If {67 f} € Cv then dl3(€7 f) = dll(ev f)+1 = T+3 and dlﬁ(ev f) = d;//(ea f) =
’7(r+2)+(r+2)1‘(r+2)+(r+2)—‘ +1 =r+ 3. Therefore, dis(e, f) = dig (e, f). O

Definition 2-5. The relation between d; and dj4is:

d/l/l(e f) _ { I—dz(ev f)-| ) {eu f} ¢ Al
L [di(e, N1 +1 {e.f} €A
111
where di7(e, f) = { d (Oe’f) Z i jz
(b), hence, they are not a distance and are like-distance.
Claim. d[4 = dl7.

. Also, d;” do not satisfy the condition

Proof. We have to show for anye, f € E(G), dul(e, f) = diz(e, f).

i-If e= f € E(QG), then djs(e, f) = diz(e, f) =0

ii- If e, f € E(G) are adjacent edges, then,

diale, f) = dix(e, f) = 2 and diz (e, f) = " (e, f) = [22E2]+1 = 2. Therefore,
dia(e, f) = diz(e, f).

iii- If e, f € E(G)are not adjacent such as Figure 1, then:

1) If {e, f} ¢ A;, then
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(1) If {e,f} € Aa, then dile,f) = dia(e,f) = r + 2 and diz(e, f) =
d;///(e7 f) _ ’le(u7m)+dl(u7y)1_dl(U7m)+dl(vxy)—‘ = r+2. Therefore, dl4(8, f) =
dl7(€7 f)
(2) If {e,f} (S Ag, then dl4(8,f) = dlg(e,f) = r+ 2 and dw(e,f) =
d;/”(e, f) = [dl(u,x)+dl(u,y)jlrdl(v,x)erz(v,y)] = r+2. Therefore, dj4(e, f) =
diz(e, f)-
(3) If {e, f} € A4, then diu(e, f) = diale, f) = r+ 2 and di7(e, f) =
d" (e, f) = "dz(u,m)-l—dz(u,y)zdz(v,m)ﬂ-dz(v,y)-‘ = r42. Therefore, dy(e, f) =
diz(e, f)-
(4) If {e, f} € As, then di(e, f) = dia(e,f) = r + 3 and diz(e, f) =
d;"l(e, f) _ ’le(u7m)+dl(u7y)1_dl(U7m)+dl(vxy)—‘ = r+3. Therefore, dl4(8, f) =
dl7(€7 f)
(5) If {e,f} € C, then du(e, f) = di2(e,f) = 7+ 2 and di7(e, f)
4" (e, f) = ’V(r+2)+(r+2)1(r+2)+(r+2)—‘ = r + 2. Therefore, djs(e, f) =
diz(e, f)-
2) If {e, f} € Ay, then diu(e, f) = dia(e, f) =r + 2 and diz(e, f) = d]"' (e, f) =
[dl(U’I)erl(u’y):[dl(v’del(U’y)—‘ + 1 =r+ 2. Therefore, djs(e, f) = diz(e, f). O

Table 1. Examples for sets which have been defined in above

Set c Ay Ag Ag Ag As

Example
- = y E o B
5 v | '}T“” « P [ —

L A I S A I S A B i T
diy(e, f) =
. di(z,u),d(z,v), } 3 1 2 2 2 3
m‘“{ dy(y, ), dy (y, v)
dia(e, ) =
di(z,u), d(z,v), 3 3 3 3 3 4
max{ dy(y, ), dy(y,v)
diz(e, f1G) = dig(e, f1G)
dip(e, fIG)+1 ,e#f 4 2 3 3 3 4
0 Je=f
dig(e, f1G) = diz(e, fIG)
dia(e, fIG) ,e#f 3 3 3 3 3 4
0 ,e=f
2, (w,2)Fd, (w,
e, f) = LD TOTY) 5 ) 10 10 11 13
dy(v,z)+d;(v,y) 1 P 1 y
P —
dis(e, f) = dio(e, f)
5 2 2 3 4 3

{ di'(e. f) e#f
0 ,e=f

Corollary 2-6. Deo(G) =3 (. frcp() dis(e, [), Des(G) = X ot. rycma) dis(e, f)
and Dey(G) = Z{e,f}gE(G) diz(e, f)-

Proof. Since djg = di5, di3 = dijg and dj4 = d;7, we obtain the desire result. O
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Theorem 2-7. The first edge detour index of connected graph with m edges,
D.3(G), according to distance between vertices is:

De3(G) = 3 ZmGV(G) Y yevie) deg(x) x deg(y) x di(z,y) — 3 — 3272, (ti — 1)+
tesreds (3) e frens ( )+ Xesreas (1) + e reas (3 ) + |C|

where 71 is the pair of adjacent vertices which are not in a cycle, 5 is the pair
of adjacent vertices which are in a cycle and ¢; is the length of longest cycle
which pair of vertices occur on it.

Proof. By the Definitions 2-1 and 2-4 and Corollary 2-6, we have:

De3(G) = E{e,f}gE(G) dis(e, f) =

_ di(u,z)+di (u,y)+di(v,2)+di(v,y)
=2 e f) e A [ *
ife=uv, f=xzy
di(u,z)+d; (u,y) +dl('u z)+d;(v,y) l)
2 fe f} e Ay ( t3) T
ife=uv, f =uzy
di(u,z)+d; (u,y) +dl('u z)+d; (v,y) l)
enea t3)t
ife=uv, f =zy
di(u,z)+d; (u,y) +dl('u z)+d; (v,y) l)
2 fe e Ay ( i)t
ife=uv, f =zy
di (u,2)+di (u,y +dl(v z)+di(v,y) §)
Senea t1)t
ife=uv, f=uzy
dy(u,z)+di (u,y +dl(v x)+di (v,y) )
2 fe frec ( +1

ife=uv, f=uzy
2 {e.fy € E(G)
ife=uv, f =uxy
Ytesrens (3) T Xieyeas (3) T Xiepyeas (1) + Xiepyen, (3) +1C]
For each pair of vertices u,z € V(G) such that u # 2 which is not adjacent,
the distance d;(u, ) in like distance d] is repeated deg(u) x deg(x) times. And
if every pair of vertices u,x € V(G), u # x, is adjacent, distance d;(u,x) is
repeated deg(u) x deg(z) — 1 times. Therefore,

dy (u,@) +dy (uy) +di (v,2) i (v,y)
4

De3(G) = 5 ZmGV(G) Y yevie) deg(x) x deg(y) x di(z,y) — 3 — 3 3272, (ti — 2)+
Stesreds (3) e srens (%) + X (e rea, (3) + Z{e,j}eA5 (4) + |C|
O

Theorem 2-8. The second edge detour index of connected graph with m
edges, D.4(G), according to distance between vertices is:
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Des(G) = 5 ZmeV(G) Y yevie) deg(z) x deg(y) x di(z,y) — 3 — 3 3072, (t: — 1)
Dtesrens (3) + e rreas ( ) + X e sreas (1) + e rreas (4) + |A1|

where 71 is the pair of adjacent vertices which are not in a cycle, 5 is the pair
of adjacent vertices which are in a cycle and ¢; is the length of longest cycle
which pair of vertices occur on it.

Proof. Due to the definition of D.4(G)and Definitions 2-1 and 2-5 and Corollary
2-6, we have:

Des(G) = Z{ej}gE(G) diz(e, f) =
Yienycr@ e )+ e yean T+ Xepens 1T Dgesreas 1t
Ppesreas 1+ 41l
For each pair of vertices uandz such that v # = which is not adjacent, the
distance d;(u, z) in like-distance dj is repeateddeg(u) x deg(z) times. And if

every pair of vertices uandz, u # x, which is adjacent, distance d;(u,x) is
repeated deg(u) x deg(z) — 1 times. Therefore,

Des(G) = 3 ZmGV(G) Y yevie deg(x) x deg(y) x di(z,y) — 3 — $ 3072, (ti — 1)
tesreds (3) e frens (%) + e rrean (1) T Xiesreas (3 ) + |A1|

O

Theorem 2-9. The third edge detour index of connected graph with m edges,
D.o(G), according to distance between vertices is:

Deo(G) = £ Saevicn Syevic deg() x deg(y) x di(z,y) — 3 — 102, (4 — 1)+
dz(u ) +di (u,y) +di (v,2)+di (v,y)
E{e,f}EC (3[ 4 D+
ife=uv, f =xy

D (e, freAs (3) + D (e freds (3) + D e freds (1) +
Y erreas (3) = TIC| — |Aa| + | As| — | 45]

where 71 is the pair of adjacent vertices which are not in a cycle, 5 is the pair
of adjacent vertices which are in a cycle and ¢; is the length of longest cycle
which pair of vertices occur on it.

Proof. Due to the definition of Do(G)and Definitions (2-1 and 2-3) and Corol-
lary (2-6), we have:
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Deo(G) = Z{e,f}g};(c) dis(e, f) =

_ di(w, @) +di (w,y)+di (v,2)+di (v,y)
N Z {67 f} € Al 4 *
ife=uv, f=uzy
1(u,@) +di (u, y)+dz(v @) +di(vy)] _
Z {e, f} € Ay ( 1) +
ife=uv, f =y
1(u,@) +di (u, y)+dz(v z)+di(v,y)
Z {e, f} € As ( ) +
ife=uv, f=xy
1(u,@) +di (u, y)+dz(v @) +di(v,y) |
Z{e,f}€A4 ( +1)+
ife=uv, f=xzy
1(u,) +di (u, y)+dz(v z)+di(v,y)
Senpeas (| [-1)+
ife=uv, f=uxy
di(u,)+di(u, y)+dl(” z)+di(v,y) -
Z{e,f}EC ([ —‘ 7>_

ife=uv, f =y
2 {e.fy € B(G)
ife=uv, f =zy

L e frec
ife=wuv, f=zy
Siefrea (3) F e reas (3) + Lo pyea, (1) +
Siereas (1) = TIC] = |Az| + [ Aa| — | As|

For each pair of vertices uandx such that w # = which is not adjacent, the
distance d;(u,z) in like-distance dj is repeateddeg(u) x deg(z) times. And if
every pair of vertices uandx, u # x, which is adjacent, distance d;(u,x) is
repeated deg(u) x deg(z) — 1 times. Therefore,

di(w,)+di (u,y) +di (v,2)+di (v,y)
1 i U4 i A +

(3 {dl<u,m>+dl(u,y>1dz<v,w>+dz<v,y>W) +

Deo(G) = § Xsevi(c) Lyevic) des(®) x deg(y) x di(w,y) = — 3 572, (6 — 1)+
dz(u ) +dy (u,y) +di (v,2)+di (v,y)
E{e,f}EC (3[ 4 D+
ife=uv, f =uxy

D (e, freAs (3)+ D (e freds () + D e freds (1) + D (e, freAs (3) —71C1 -
|Az| + |As] — | A5

O

Corollary 2-10. The explicit relations between edge versions of detour index

are

Des(G) = De3(G) + |A1| = |C|
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Deo(G) = Deal@ +5 (o 1y ¢ proy (3] LA )by (o) ]

ife =wuv, f =ay

— A1l =

7|C| = [A2] 4 [A4] — |As]

(5[ Attt L2) b () 1) g 10| — | A+ |Ag] —

Deo(G) = DeS(G)+Z {e, f} C E(G)
ife =uv, f =y

[As]

Proof. Due to the Theorems 2-7, 2-8 and 2-9, we can get the desire results. [

Now, we state the edge detour indices of some well-known graphs.

Table 2.
Graph (G) | De3(G) | A1 |Az| | [As] | |45] | |C]
P, ln(n —1)(n—2) ( ”;1 ) o |o Jo o
1 n—1
Sn 5(n—1)(n—-2) 9 0 0 0 0
Cn: ' : n
nisodd %n?’ — %nz + %n ( 9 ) —n [0 0 n 0
Ch, 3.3 3,2 n n | n
niseven | 8" n +In 2 2|2 0 0 0

Graph (G) | Dea(G) Do (G)

P, %(n—l)(n—2)(n—|—3) %n(n—l)(n—Q)
Sn (n—1)(n—2) 1(n—1)(n—2)
C7L7 ' 3 3 ' €
nisodd in® —&n an® —n’ + §n
Chn, 3.3 3,3 3.2 ,3

S — 2 2 _ 2 2
niseven 8" " i 2™ T an
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